Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells.

نویسندگان

  • Sönke Scherzer
  • Lana Shabala
  • Benjamin Hedrich
  • Jörg Fromm
  • Hubert Bauer
  • Eberhard Munz
  • Peter Jakob
  • Khaled A S Al-Rascheid
  • Ines Kreuzer
  • Dirk Becker
  • Monika Eiblmeier
  • Heinz Rennenberg
  • Sergey Shabala
  • Malcolm Bennett
  • Erwin Neher
  • Rainer Hedrich
چکیده

The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin's pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H+ and Cl- fuse with the plasma membrane, hyperacidifying the "green stomach"-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge induced closing of Dionaea muscipula Ellis trap.

In terms of bioelectrochemistry, Venus flytrap responses can be considered in three stages: stimulus perception, electrical signal transmission, and induction of mechanical and biochemical responses. When an insect touches the trigger hairs, these mechanosensors generate receptor potentials, which induce solitary waves activating the motor cells. We found that the electrical charge injected bet...

متن کامل

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus fl...

متن کامل

The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent h...

متن کامل

Biologically closed electrical circuits in venus flytrap.

The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. T...

متن کامل

The Venus Flytrap as a model for a biomimetic material with built-in sensors and actuators

In the present paper a model is presented for the dynamic response of a family (Droseraceae) of carnivorous plants such as the Venus Flytrap (Dionaea Muscipulu Ellis) and the Waterwheel Plant (Aldrovanda Vesicuha) to external dynamic disturbances. The goal of the present investigation is to apply such modelling to the molecular design of biomimetic materials with sensors and actuators. In model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 18  شماره 

صفحات  -

تاریخ انتشار 2017